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VII. Classical Tests of Cosmology

A cosmological model is specified by H0 and q0. For now, let us postpone
measurement of H0. Look at tests for q0.

The principle behind measuring q0 is to find a physical effect that depends on
q0. An alternative approach is to measure Ω0. Each method has its advantages:
1. q0: Pure test of geometry. Limitless possible ways to measure (just need stan-

dard candles of any sort). The major difficulty is that it is impossible to do
locally with any practical test. Global measurements invariably become tied up
with time evolution.

2. Ω0: This is a very restricted kind of test. Must measure dynamical masses.
Tough to do. However, it can be done purely locally, so no evolutionary con-
cerns.

In practice, Ω0 is easier to measure, although neither Ω0 or q0 is known with
any high degree of reliability yet.

Tests for q0

There are three practical tests that have been attempted over the years:
a) m− z relation for standard candles
b) Angular diameter - z relation
c) Number counts

Magnitude-Redshift test. The classic standard candle is the first ranked galaxy in
clusters. For reasons that are not clear, the luminosity of this galaxy is remarkably
constant with an r.m.s. scatter of only 30% or so. The canonical application of the
m − z test is to plot the apparent mangitude m versus log z in a so-called Hubble
diagram. If m measures the apparent bolometric magnitude of an object, then from
Eq. 6.22, we have

mbol = −2.5 logFbol + constant

= 5 log z + 5 log

(
1 +

z(1− q0)√
1 + 2q0z + 1 + q0z

)
+ constant′.

(7.1)

It will be understood that all logarithms are base 10. The constants include the
unknown absolute luminosity of the galaxy and the uncertain Hubble constant. For
small redshifts we find that m ∝ 5 log z while at large redshifts the relation deviates
in a way that depend on q0. Fig. 7.1 shows the Hubble diagram relation for different
values of q0.

In practice, observations of first ranked galaxies require that several corrections
be applied first.

a) Giant elliptical galaxies do not have particularly well defined total magni-
tudes. The reason is that they have extended envelopes with profiles that



-2-

are nearly power laws with index −2, for which the total luminosity con-
verges very slowly with increasing aperture size. The solution is to measure
the galaxy luminosity inside some fixed metric radius. Other approaches
that have been tried are to measure the luminosity inside a fixed isophotal
radius (i.e., the radius where the surface brightness falls to some predeter-
mined value) or inside some characterstic scale radius (e.g., a core radius)
measured from the shape of the luminosity profile. In practice, neither of
the latter two methods has proved superior to using a metric radius.

b) K-correction. Measurements of galaxy magnitudes almost never measure
bolometric magnitudes, but instead usually measure the apparent magni-
tude within some fixed bandpass. The K-correction is defined to be the
correction needed to convert the measured magnitude to a quantity that is
proportional to the bolometric magnitude. If a galaxy had redshift z, then
the frequency ν0 that we measure on earth is equivalent to ν0(1 + z) at the
galaxy. Also, the bandpass ∆ν0 on earth is equivalent to ∆ν0(1 + z) at the
galaxy. Hence what we measure is

L′∆ν0 = Lν0(1+z)∆ν0(1 + z) = (1 + z)

(
Lν0(1+z)

Lν0

)
(Lν0∆ν0) . (7.2)

The bolometric luminosity is proportional to Lν0∆ν0, so the K (or bolomet-
ric) correction is

K = −2.5 log
Lν0

(1 + z)Lν0(1+z)
. (7.3)

Sometimes we work with Lλ = Lνc/λ
2. In this case

K = −2.5 log
(1 + z)Lλ0

Lλ0/(1+z)
. (7.4)

Normally the sense of the K-correction is to increase the apparent brightness
of a galaxy. Note that the way K is defined, this is still not the flux that
we would measure if the galaxy were brought to rest [there would still be
an extra factor of (1 + z)2].

c) Aperture correction: Suppose we want to measure L insize a metric radius R
(e.g., 8 kpc for H0 = 100). Then this radius corresponds to an angle δθ given
by

δθ =
R(1 + z)H0

Z
, (7.5)

where Z is the combination of z and q0 defined in Chapter 6. But this leads
to a dilemma: we need to know q0 in order to determine the aperture size
needed to measure the magnitudes from which we will derive q0. Because the
luminosity and aperture depend on q0 in different ways, it is possible to resolve
the dilemma (e.g. with an iterative solution), but the power of the Hubble
diagram test for q0 is weakened. The alternative choices for scale length each
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have their own problems: the isophotal radii need to be corrected for the (1+z)4

of surface brightness on redshift. The only characteristic scale lengths that can
be measured from galaxy profiles are core radii, and these become impossible
to measure for galaxies at high redshift because atmospheric seeing blurs the
galaxy images too much.

d) Evolutionary effects become important at large redshift. Galaxies at high red-
shift are younger than galaxies today, and galaxy evolution models predict that,
in most cases, they had a higher luminosity in the past. Counteracting this, it
has been suggested that first ranked galaxy luminosities increase in time due to
accretion by dynamical friction of other cluster members. It is now recognized
that evolutionary effects have a larger impact on the Hubble diagram than the
q0 dependence, and since the magnitude of the corrections is not well known,
the Hubble diagram is actually more useful for studying galaxy evolution than
it is for doing cosmological tests.

Angular Diameter Tests. The basis for this test is given by Eq. 7.5. Again,
the idea is to find some object with a standard length and plot apparent diameter
vs. redshift. Both first ranked galaxies and galaxy clusters have been suggested
as objects having standard lengths. The measurements are difficult to do, and the
assumption of constant length scale for clusters and galaxies is not yet well founded.

Number Counts. The easiest test to do is to count galaxies as a function of
limiting magnitude. If N(m) is the number of galaxies brighter than limiting mag-
nitude m, then at low redshift, logN ∝ 0.6m + constant, but at high redshift the
slope deviates from 0.6 due to the effects of cosmology. Classic integrated num-
ber count tests (whereby galaxies are counted in a fixed bandpass), however, suffer
from the fact that the intrinsic luminosity function of galaxies is broad, unknown K
corrections must be applied, and galaxy evolution is again likely to be important.

Number counts become more interesting if, by some method, we can measure
the redshifts of objects. For this test, the redshifts need not be very accurate, and
so-called photometric redshifts have been proposed as being viable. Photometric
redshifts are based on the fact that multiband photometry of galaxies done using
filters of intermediate width is effectively the same as very low resolution spec-
troscopy, and if some feature (for example, the HK break due to Ca II absorption
lines around 3900 A) can be identified in the multiband photometry of a galaxy,
then a rough redshift can be estimated.

The fundamental quantity that we would want to compute is dN/dz, where N
is the total number of objects counted in some solid angle ∆Ω. First, let us write
down the number of objects contained in a volume bounded by ∆Ω in angle and
∆u in comoving distance, where u is a function of z. Then

∆V = ∆Ω∆uR2(z)S2
k(z)R(z)ρ(z). (7.6)

Aside from determining the relation between u and z (which will be dealt with
imminently), the key relations that are needed are:
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a) The comoving density of objects is assumed to be constant; hence

ρ(z) = ρ(0)(1 + z)3; (7.7)

b)

R(z) =
R0

(1 + z)
. (7.8)

Combining,
∆N = ρ0R

3
0S

2
k(u)∆u∆Ω (7.9)

and so
dN

dz
= ρ0R

3
0S

2
k(u)

du

dz
. (7.10)

Now we relate z to u. This is done in three steps:

a) From Eq. (6.12), u = (θ0 − θz). So

du

dz
= −

[
dθ

dz

]

z. (7.11)

b)

Ck(θ) =
1

q
− 1; (7.12)

c)

q =
q0(1 + z)

1 + 2q0
. (7.13)

Thus,

Ck(θ) =
1− q0 + q0z

q0(1 + z)
, (7.14)

−kSk(θ)
dθ

dz
=
dCk(θ)

dz
. (7.15)

and
dCk(θ)

dz
=

2q0 − 1

q0(1 + z)2
, (7.16)

Sk(θ) =
√
k(1− C2

k) =

√
k(2q0 − 1)(2q0z + 1)

q0(1 + z)
. (7.17)

Combining,
dw

dz
= −dθ

dz
=

k(2q0 − 1)√
k(2q0 − 1)(2q0 + 1)(1 + z)

(7.18)
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and
dN

dz
= ρ0

Z2

H2
0

R0
k(2q0 − 1)√

k(2q0 − 1)(2q0 + 1)(1 + z)
. (7.19)

Substituting

R0 =
1

H0

√
k(2q0 − 1)

(7.20)

finally gives
dN

dz
=

ρ0Z
2

H3
0 (1 + z)

√
2q0z + 1

. (7.21)

This equation is sometime written replacing Z with the luminosity distance DL =
Z(1 + z)/H0:

dN

dz
=

D2
L

H0(1 + z)3
√

2q0z + 1
. (7.22)

The units are number of galaxies per unit solid angle.

For certain calculations (e.g., the number density of QSO absorption line sys-
tems along any line-of-sight), it is useful to know the quantity ds/dz, where s is the
linear path length. We have

ds

dz
=
Rdu

dz
=

R0

1 + z

du

dz
. (7.23)

Upon substitution of du/dz, we find

ds

dz
=

1

H0(1 + z)2
√

1 + 2q0z
. (7.24)

Returning to the number count test, we find, for example, that the difference
in dN/dz between a q0 = 0 and q0 = 1 universe is a factor 1.28 at z = 0.5 and a
factor 4.5 at z = 1. The sense is that there are more galaxies in a q0 = 0 universe.

Practical application of the number count test must contend with several prob-
lems:
a) In any practical measurement, galaxies are selected on the basis of their apparent

brightness. So
dNobs
dz

=
dN

dz

∫ ∞

L(DL)
φ(L)dL, (7.25)

φ being the luminosity function of galaxies.
b) Galaxy luminosity evolution affects dN/dz in a way that is difficult to disen-

tangle from changes in q0. There are at least two possible ways that evolution
can be neutralized:
i) Measure the luminosity function at each redshift. Provided that luminosity

evolution is the same for all galaxies, then the number of galaxies brighter
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than some fiducial magnitude (say L∗) will still be independent of the evo-
lution. It is then necessary to measure the shape of the luminosity in order
to extract the characteristic luminosity L∗. If the shape of the luminosity
function varies with redshift, then this approach will fail.

ii) Luminosity evolution affects the determination of q0 in the opposite sense
from the way that it does in the magnitude-redshift test: an increase in
galaxy luminosity mimics a decrease in q0 for number count tests. Hence
the two tests could be combined in an appropriately weighted fashion to
cancel the effects of evolution.

The only serious attempt to use number counts to measure q0 has been by
Loh and Spillar (198?), who find a formal value of q0 = 0.45± 0.3.

Tests of Ω

The measurement of Ω typically is two-step procedure: first one measures
the masses of objects such as galaxies or galaxy clusters via dynamical means in
order to determine a typical mass/light ratio, and then one measures the mean space
density of those objects and derives a total mass density which is then compared to
the critical density 3H2

0/8πG. A big complication in this procedure is that it appears
that most of the mass in the universe is in a dark component that is only loosely
bound to individual galaxies. Hence one is not yet sure what the true mass/light
ratio of the universe is when averaged over a “fair volume”. The mass/light ratios
of individual galaxies (determined from rotation curves of spiral galaxies or virial
analyses of elliptical galaxies) are typically in the range 6−12h. [Note: dynamically
determined masses are proportional to rv2/G where r is some characteristic radius
and v is some characteristic velocity. Luminosities are proportional to r2. Hence
M/L ∝ r−1. Since the Hubble constant is not yet well known, distances are usually
written in units of h−1, where h = H0/100 km s−1 Mpc−1.] [Spiral galaxies have
flat rotation curves that imply mass increasing linearly with radius with no outer
radius detected; hence M/L ratio is not particularly well defined. The values quoted
here refer to the ratio measured inside some characteristic optical radius.] Masses
of galaxy clusters are typically 300h. The M/L ratio needed to close the universe
is about 1200h. Hence if the M/L ratio of clusters is typical of the entire universe,
then Ω = 0.25. Measuring M/L ratios on scale larger than galaxy clusters is quite
difficult but can be attempted by measuring large-scale flows of galaxies. This
subject will be examined more closely in Chapter 10.


